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In order to exploit symmetry analysis fully, one must
use ‘“‘common sense’” in applying it to particular strue-
tures. For example, suppose the waveguide under con-
sideration has a particular symmetry type, but its cross
section is such that it “almost” has a higher symmetry
type. This waveguide may well have mode classes which
are nearly degenerate, and one would be advised to study
the implications of both symmetry types to predict the
modal characteristics the structure would exhibit. Actually,
a deeper exploration of symmetry analysis can indicate
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how the degeneracies of modes are split when the sym-
metry is “lowered;” this would require some knowledge of
group representation theory and is not considered here.
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Characteristics of Uniform

Waveguides — |I: Theory

PAUL R. McISAAC, MEMBER, IEEE

Abstract—The application of symmetry analysis to uniform wave-
guides is discussed. Symmetry analysis provides exact information
concerning mode classification, mode degenerdcy, modal electro-
magnetic-field symmetries, and the minithum waveguide sectors
which completely- determine the modes in each mode class. This
paper provides a summary of the development that leads to the re-
sults concerning symmetry-induced modal characteristics of uni-
form waveguides discussed in the previous paper. Some of the con-
cepts of group theory are introduced, including the irreducible repre-
sentations of symmetry groups. The use of the irreducible repre-
sentations to determine the mode classes and their degeneracies is
described. The projection operators belonging to the irreducible
representations are introduced and their application to determining
the azimuthal symmetry of the modal fields is explained. The mini-
mum waveguide sectors for the mode classes are obtained from the
azimuthal symmetry of the modal fields.

I. INTRODUCTION

HE PURPOSE of this paper is to provide a summary of

the development that leads to the results concerning
the symmetry-induced modal characteristics of uniform
waveguides discussed in the previous paper. These results
are based on group theory and, in particular, on the theory
of group representations. There have been many applica-
tions of group theory to various branches of physics and
chemistry, and the literature describing these applications
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is copious. However, there have been few applications of
group theory to the field of microwaves. One exception is
symmetrical waveguide junctions which have been investi-
gated by Montgomery et al. [ 1], Kerns [2], and Auld [3].
A few papers have been published which explored the con-
sequerices of symmetry in periodic waveguides. Two recent
publications are [4] and [5]; the second paper employs
group-theoretic methods. There has been little attention
given, however, to exploiting the role symmetry plays in
determining the modal characteristics of uniform wave-
guides.

A coherent cxposition of the development of the com-
plete theory required for the symmetry analysis of uniform
waveguides starting from the basic concepts of group
theory is not feasible in the few pages appropriate to a
journal paper, and this is not attempted here. Instead,
the relevant results from group theory will be cited, and
3 brief indication given how these lead to the results pre-
sented for uniform waveguides in the previous paper
(hereafter referred to as [17). This paper is not intended to
enable a reader unfamiliar with group theory to attain a
working knowledge of it as a technique for application to
microwave analysis. However, it is hoped that these
papers may provide a glimpse of the power of this techni-
que and motivate some readers to explore it. Three of the
many excellent books on the application of group theory
to various branches of physics and chemistry are [61-[8].
To provide the maximum assistance to any interested
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reader of this abbreviated account, specific page references
will be made to the book by Tinkham [8] for the group
theoretical results needed in this exposition.

II. UNIFORM-WAVEGUIDE EQUATIONS

In these papers attention is restricted to uniform wave-
guides which may be transversely inhomogeneous, but
whose media are isotropic and piecewise homogeneous.!
For a uniform waveguide of infinite length, and assuming
an exp (Jwt) time dependence, the possible electromagnetic
fields can be classified into a set of modes, each of which
varies as exp (—vz), where the propagation constant v
is characteristic of the mode and a funetion of w. For wave-~
guides with a closed boundary, the mode spectrium is dis-
crete, and there are an infinite set of discrete values for
each w. For open boundary waveguides, the mode spec-
trum consists of a finite set of discrete modes plus a con-
tinuous spectrum.

The transverse components of the electromagnetic fields
of any mode can be expressed in terms of the longitudinal
components [97]. In the ¢th medium of an inhomogeneous
waveguide the transverse components can be written as

Bro= i i

{YVrE i — jkiZi(a, X VoH )}

Hyp; = {vVeH ;i + j(ki/Z:) (a; X VzE L) }.

vE A+ kP
Here, ki = w(pe)¥? and Z; = (ui/e;)Y? are parameters
characteristic of the 7th medium, Vy is the transverse V
operator, and @, is a unit vector in the z direction.

The partial differential equations for the longitudinal
components of the electric and magnetic fields in the sth
medium are

(Ve + k2)E,; =
(Va2 + k2H,: =

The boundary conditions at the interfaces between the dif-
ferent media must also be considered. These boundary
conditions are based on the continuity of the tangential
components of the electric and magnetic fields at the inter-
faces. The boundary conditions at the surrounding wave-
guide wall (if any is present) must also be included. If
the waveguide has an open boundary, then the modal
fields must fall off at least as fast as 1/7V/2, for large values
of the radius r.

The set of partial differential equations for E, and H,
for all regions of the waveguide, together with the set of
boundary conditions, form an eigenvalue problem. For
a given value of the frequency w, the set of allowed values

- 'YZEzi

- 72Hzi-

! The results listed in paper [I] actually hold for more general
waveguides. For example, they hold for inhomogeneous waveguides
with uniaxial, piecewise-homogeneous media when the optical axis is
parallel to the z axis, and also for waveguides with isotropic media
where the media may be transversely inhomogeneous. For these more
general cases, the analysis must be modified somewhat, but the re-
sults are the same as those cited in [I].
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of ¥ are the eigenvalues, and the corresponding pairs of
E,, H, are the eigenfunctions.

For the purposes of symmetry analysis, it is not neces-
sary to find explicit solutions to the eigenvalue problem
summarized here. Several of the modal characteristics can
be deduced from the symmetry of the waveguide cross
section alone. The modes of inhomogeneous waveguides
are, in general, hybrid modes with longitudinal compo-
nents of both the electric and magnetic fields. Homoge-
neous waveguides are a special case of the more general
inhomogeneous waveguides, and the discussion applies
to homogeneous waveguides with some obvious simplifica~
tions.

III. ELEMENTARY GROUP THEORY

By a group @ is meant a set of distinct elements for
which a combining operation is defined and which satisfies
four group postulates [8, pp. 6-7]. The combining opera-
tion is called ““group multiplication’” and associates a third
element of the set with any ordered pair of elements. The
four group postulates are as follows.

1) The product of any two elements of G is itself a
member of G.

2) The associative law holds so that for any three ele-
ments A, B, C of G; (AB)C = A(BC) = ABC.

3) @ contains an element E, called the identity ele-
ment, such that for any element A of G, AE = EA = A.

4) For any element A of @, there exists an element of
@ called the inverse of A, and denoted by A~%, such that
A-A = AA7' = E.

The number of distinet elements of @ is called the order
of the group and denoted by g. For any particular group
one can write a group multiplication table which displays
the results of multiplying any two elements of the group.
Note that group multiplication is not required to be com-
mutative; that is, in general, AB = BA.

Examples of groups are provided by the sets of spatial
symmetry operations discussed in the previous paper.
It is easy to see that the set of n distinet rotations about
an axis which was labeled C, in [I] satisfies the group
postulates. Likewise, the set of » distinet rotations about
an axis and % mirror reflections in planes containing the
axis which was labeled C,, in [17] also satisfies the group
postulates. Sets of spatial symmetry operations which
satisfy the group postulates are called symmetry groups;
for a discussion of uniform waveguides, only the C, and
Cry symmetry groups need be considered.

The relationship of the group of spatial symmetry opera-
tions belonging to a particular symmetry group possessed
by a particular waveguide and the modal electromagnetic
fields of the waveguide can be expressed in either of two
ways. Consider some symmetry operation R belonging
to the symmetry group @. One can apply the symmetry
operation R to the waveguide structure, leaving the modal
fields fixed in space; or one can apply the symmetry opera-
tion R to the modal fields, leaving the waveguide structure
fixed in space. In either case, after the symmetry opera-
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tion is applied, the modal fields must again be a solution
to the boundary value problem for the waveguide. For
clarity, we distinguish between symmetry operations on
the structure and on the electromagnetic fields by defining
P(R) to be that symmetry operation acting on the clectro-
magnetic fields which is equivalent to a spatial symmetry
operation R on the structure. In order for the resulting
electromagnetic-field~waveguide-structure relationship to
be the same after operation by either R (on the structure)
or P(R) (on the electromagnetic fields), one must have

P(R)E(r) = E(R™r)

where E(r) is the clectric field and R! is the symmetry-
operation inverse to R; a similar relation holds for the
magnetic field [8, p. 327].

In addition to symmetry groups there are many other
sets of elements which satisfy the requirements for a group.
Particularly important examples for symmetry analysis
are sets of square matrices which satisfy all the group pos-
tulates with matrix multiplication as the group multipli-
cation operation. Such a set of matrices is called a group
representation, and certain group representations are
central to symmetry analysis.

Given any symmetry group G of order ¢, one can always
devise a set of ¢ matrices which satisfies the same multipli-
cation table as the symmetry group, after making a cor-
respondence between each element of the symmetry group
and one of the matrices. In fact, the number of possible
group representations (sets of matrices) corresponding to
any symmetry group is infinite. The simplest group repre-
sentation for any symmetry group is a set of one-dimen-
sional matrices of unit amplitude.

Although an infinite number of group representations
can be written for any symmetry group, it is found that all
of these can be written as the sum of a few group repre-
sentations whose matrices have a dimension of one, two,
or at most, three [8, pp. 19-207. These few group repre-
sentations are called the irreducible representations
associated with the symmetry group. For the symmetry
groups of current interest, the associated irreducible rep-
resentations are known and tabulated (see, for example,
the tables in [67], [7], or [8]).

The boundary value problems associated with wave-
guides can usually be formulated in terms of an eigen-
value problem. Typically,

Ly =M\

where L is an operator, \ is an eigenvalue, and ¢ is the
associated eigenfunction. Suppose the waveguide has the
symmetry group ¢. If R is one of the symmetry operations
of the group, then the operator P(R) must commute with
the operator L. Therefore,

P(R)Ly = P(R)\
L(P(R)Y) = \P(R)Y.

Thus if ¥ is an eigenfunction with eigenvalue N, then
P(R)¢y must also be an eigenfunction with eigenvalue A.
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If the eigenvalue A has p degenerate eigenfunctions, ¥:
(¢ = 1,2,--+,p), then P(R)y,, where ¢, is one of these p
eigenfunctions, can always be expressed as a sum over the
p degenerate eigenfunctions. The effect of P(R) is com-
pletely characterized by its effect on each of the basis
functions y,. For example

P(R)Y, = 1T (R)y; + ol (R)2; + « -+ + ¥uT'(R) .
(L

The coefficients T'(R).; in these equations can be con-
sidered to be the elements of a p X p square matrix T'(R).
If the ¥; are collected into a row matrix

Vo= (Yuads- - - Pp)
then (1) can be written as
P(R)y = yT'(R). (2)

Any solution of the eigenvalue problem with eigenvalue
A must be expressible as a linear combination of the p
independent solutions Yy, s, « « + W,. Thus there is an equa-
tion analogous to (2) for every member of the symmetry
group (. The complete set of matrices T'(R) for all ¢
members of the symmetry group forms a representation.
The basic assumption of symmetry analysis is the Irre-
ducibility Postulate ([7, pp. 183-1847 or [8, p. 34]):

Provided there are no accidental? degeneracies, every de-
generate group of eigenfunctions of an operator L provides an
irreducible representation of the group of symmetry operations
which leaves L invariant.

Thus the T'(R) in (2) form an irreducible representation.
An alternative form of this postulate is the one which
is used as the basis for the symmetry analysis here.

For every p-dimensional irreducible representation of the
symmetry group under which an operator L is invariant, we can
find p-fold degenerate sets of eigenfunctions. Any further de-
generacy would be accidental and expected to oceur only rarely,

As a consequence, any eigenfunction of the operator
L can be associated with a row of one of the irreducible
representations of the symmetry group G. For those ir-
reducible representations which are one-dimensional, each
of the associated eigenfunctions is nondegenerate. For
those irreducible representations which are two-dimen-
sional, the associated eigenfunctions must occur in degen-
erate pairs, with one member of each pair associated with
the first row and the second member with the second row
of the jrreducible representation. A similar statement
applies to higher dimensional irreducible representations,
but for uniform waveguides only one- or two-dimensional
irreducible representations are encountered.

Suppose one finds a function ¢ which is a solution of the

2 The fundamental assumption is adopted that the basic cause of
mode degeneracy is (almost) always symmetry related. If a degener-
acy is found which appears not to be symmetry related, it is termed
an ‘“‘accidental” degeneracy. In most cases, however, a deeper analy-
sis reveals a subtle symmetry which produces the ‘‘accidental”
degeneracy.
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eigenvalue problem; ¢ may be a single. eigenfunction or
some sum of eigenfunctions. The function ¢ can be de-
composed into a sum of functions, each of which belongs to
one row of one of the irreducible representations of the
symmetry group G by using the “projection operators”
of the symmetry group [8, pp. 39-41]. When the projec-
tion operator pu® for the ¢th irreducible representation
is applied to the function ¢, it selects out that part of ¢
which belongs to the kth row of the 7th irrducible repre-
sentation.
For example, suppose

N d;
o= 2 2 ¢u®?

=1 m=1

where the'sum on j is over the &N irreducible representations
of the symimetry group, d; is the dimension of the jth
irreducible representation, and ¥ is an eigenfunction
belonging to the mth row of the jth irreducible represen-
tation. Then

o & = Y,

tions belonging to the several rows of the same irreducible
representation will be degenerate with each other.

For irreducible representations with d; > 2, the eigenfunc-

IV. APPLICATIONS TO UNIFORM
WAVEGUIDES

In the brief discussion of Section IIl, it was stated that
each eigenfunction of an operator can be associated with
a row of one of the irreducible representations of the sym-
metry group to which the operator belongs. For uni-
form waveguides, the operator is (Vs + k), and the
symmetty group is either C, or C.,. The eigenfunctions
are the E,, H, pairs for each mode of the waveguide. Thus
each mode of a uniform waveguide can be identified with
a row of one of the irreducible representations of the sym-
metry group of the waveguide. The mode classes of the
uniform waveguide are defined on this basis. All of the
modes belonging to the same row of the same irreducible
representation are placed in the same mode class.

Thus the total number of modé classes for a uniform
waveguide is equal to the total number of rows of all of
the irreducible representations of the symmetry group of
the waveguide. Further, every irreducible representation
which has a dimension of two will have two mode classes
associated with it whose modes are mutually degenerate.
Since the symmetry groups C, and C,, have no irreducible
representations with dimension higher than two, there
will be no symmetry-induced modal degeneracies higher
than two. This discussion is the basis for [I, tables 1 and
27

In [1, sec. V] waveguides with C, and Cs, symmetries
were discussed as examples (see [I, figs. 5(a) and 6(a)].
Reference to tables of irreducible representations of the
symmetry groups (see [6], [7], or [8], for example) re-
veals that symmetry group C; has two one-dimensional
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and one two-dimensional irreducible representations, and
symmetry group Cs. has four one-dimensional and two
two-dimensional irreducible representations. Therefore,
waveguides with €, symmetry have two nonedegenerate
mode classes and a pair of mutually degenerate mode
classes, and waveguides with Cs, symmetry have four
nondegenerate mode classes and two pairs of mutually
degenerate mode classes. ’

Using the projection operators introduced above, the
azimuthal symmetry of the modes in any mode class can
be determined. The azimuthal symmetry for each mode
class is the characteristic that physically distinguishes
the various mode classes. To exploit the projection
operators of the symmetry group of the waveguide,
one starts with a general representation for the longitu-
dinal electric and magnetic fields in the waveguide and pro-
jects out that portion belonging to a particular row of a
particular irreducible representation. The resulting ex-
pression is a representation of the modal field for the
mode class associated with that row of that irreducible
representation.

For waveguides with C, symmetry, the exponential
form of Fourier series is most convenient.

B0r) = 3 Aur) exp(jmb)
H,(6,r) = i B,.(r) exp (jm8).

m=—-00

By applying the projection operators for each irreducible
representation of a symmetry group C,, the general form
for the longitudinal electric and magnetic fields for the
modes in each mode class can be obtained. This process
was followed to determine the Fourier series representa-
tions of [, table IIT] and the waveguide sectors shown in
[1, fig. 5 and table V.

For waveguides with C,, symmetry it is most convenient
to write the Fourier serics for the longitudinal electric and
magnetic fields in the form

E. (r0) = i (An(r) cos (m8) + C,(r) sin (mh))
H,(r8) = i (B (r) cos (m8) + D, (r) sin (m#)).

m==0

By applying the projection operators for each irreducible
representation of a symmetry group C.,,, the general form
for the longitudinal electric and magnetic fields for the
modes in each mode class can be obtained. This process
was followed to determine the Fourier series representa-
tions of [I, table IV] and the waveguide sectors shown
in [T, fig. 6 and table VI].

V. NONSPATIAL SYMMETRY

In [T, sec. VI], nonspatial symmetries were mentioned.
The case of frequency-reversal symmetry will be briefly
discussed here. This symmetry is based on the real-time-
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function postulate (Carlin and Giordano [107]) which
states that the response of a system to an excitation which
is a real function of real time must also be a real function
of real time. Landau and Lifshitz [117 have shown that
for exp (jwt) time dependence this postulate requires that

*(—w) = e(w)
pH(—w) = plw)

for real .
The frequency-reversal operator P(Q) is defined bv

P F(w) = F*(—w).
Note that this is an antilinear operator, since
P(@)[aF (w)] = a*P(D)[F(w) ]

The full symmetry group of any uniform waveguide of the
type considered in these papers includes, in addition to
the spatial symmetry operations, the frequency-reversal
operation plus the product of this operation with each of
the spatial operations. Thus the total number of symmetry
operations of the group is twice the number of purely
spatial symmetry operations; and half of the total number
of symmetry operations are antilinear. Because of the
antilinear nature of these operations, it is not possible to
find matrix representations of the complete symmetry
group that satisfy the desired combining rules. It is pos-
sible, however, to find a set of matrix representations
which satisfy a different set of combining rules; this set of
matrices is called a corepresentation [8, p. 144].

A discussion of corepresentations is not feasible here,
and only the results of interest will be mentioned. It can
be shown that for most purposes [8, p. 145], only the usual
irreducible representations associated with the subgroup
of the complete symmetry group containing the spatial
symmetry operations need be considered, with a few re-
strictions. For those symmetry groups of spatial operations
whose irreducible representations are real (this includes
all the C,, groups), the inclusion of the frequency-reversal
operation has no effect. For these cases the conclusions
reached previously (ignoring the frequency-reversal opera-
tion) are all valid.

For those symmetry groups of spatial operations whose
irreducible representations are complex, and where pairs
of these irreducible representations are complex conju-
gates; then with regard to mode degeneracies, pairs of
one-dimensional complex-conjugate irreducible representa-
tions act as two-dimensional irreducible representations.
This applies to all of the C, groups for n > 2, where
irreducible representations with complex elements appear.
Use of this artifice gives all of the results of interest to
these papers without having to resort to the theory of co-
representations.

VI. CONCLUSIONS

The application of symmetry analysis to uniform wave-
guides enables one to: classify the modes of the waveguide
into mode classes based on the azimuthal symmetry of
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the modal fields, predict the degeneracies of the various
mode classes, deseribe the azimuthal symmetry of all the
modes in a mode class, and determine the minimum wave-
guide sectors, and their associated boundary conditions,
which are necessary and sufficient to completely determine
the modes in a mode class. These results follow from a
knowledge of the symmetry type of the waveguide under
consideration, and they do not require a solution of a
boundary-value problem.

The results obtained here are based on the theory of
group representations, and in particular, on the set of
irreducible representations associated with each symmetry
group. Since a mode class can be associated with each row
of each irreducible representation belonging to the sym-
metry group of the waveguide, the total number of mode
classes is equal to the total number of rows of all of these
irreducible representations. Further, the number of non-
degenerate mode classes is equal to the number of irre-
ducible representations with only a single row (that is,
these representation are matrices of order one). The num-
ber of degenerate mode-class pairs is equal to the number
of irreducible representations with two rows, Since no
irreducible representations with more than two rows can
occur for symmetry groups C, and C,,, there can be no
symmetry-induced mode degeneracies of higher order than
two.

The use of the projection operators obtained from the
irreducible representations enables one to project out from
a general function of the azimuthal coordinate the specific
azimuthal variation characteristic of all of the modes in
a particular mode class. From this, one can find the azi-
muthal symmetry possessed by the modal electromag-
netic fields of all the modes in the particular mode class.
This, in turn, leads to the determination of the minimum
waveguide sector, and its associated boundary conditions,
which is necessary and sufficient to completely determine
all the modes in that mode class.
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