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In order to exploit symmetry analysis, fully, one must how the degeneracies of modes are split when the sym-

use ‘fcommon sense” in applying it to particular struc- metryis ‘[lowered;” this would require some knowledge of

tures. For example, suppose the waveguide under con- group representation theory and is not considered here.

sideration has a particular symmetry type, but its cross
REFERENCES

section is such that it “almost” has a higher symmetry

type. This waveguide may well have mode classes which
[1] S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves

in Communication Electronics. New York: Wiley, 1965.

are nearly degenerate, and one would be advised to study [2] S. Sensiper, “Electromagnetic wave propagation on helical

the implications of both symmetry types to predict the
structures (A review and survey of recent progress) ,“ Proc. IRE,
vol. 43, pp. 149–1611Feb. 1955.

modal characteristics the structure would exhibit. Actually, [3] G. Piefke, “Die Ubertragjngseigenschaften des elliptischen
Hohlleiters,” Arch. Elelc. Ubertragung, vol. 18, pp. 255-267,

a deeper exploration of symmetry analysis can indicate Apr. 1964.

Symmetry-Induced Modal Characteristics of Uniform

Waveguides – II: Theory

PAUL R. McISAAC, MEMBl?JR, IEEE

Abstract—The application of symmetry analysis to uniform wave-
guides is discussed. Symmetry analysis provides exact information
concerning mode classification, mode degeneracy, modal electro-
magnetic-field symmetries, and the minimum waveguide sectors
which completely deterrnhe the modes in each mode class. This
paper provides a summary of the development. that leads to the re-
sults concerning symmetry-induced modal characteristics of uni-
form waveguides discussed in the previous paper. Some of the con-

cepts of group theory are introduced, includhg the irreducible repre-

sentations of symmetry groups. The use of the irreducible repre-

seritations to determine the mode classes and their degeneracies is

described. The projection operators belonging to the irreducible

representations are introduced and their application to determining

tie azimuthal symmetry of the modal fields is explained. The mini-

mum wave~de sectors for the mode classes are obtained from the

azimuthal symmetry of the modal fields.

I. INTRODUCTION

THE PURPOSE of this paper is to provide a summary of

the development that leads to the results concerning

the symmetry-induced modal characteristics of uniform

waveguides discussed in the previous paper. These results

are based on group theory and, in particular, on the theory

of group representations. There have been many applica-

tions of group theory to various branches of physics and
chemistry, and the literature describing these applications
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is copious. However, there have been few applications of

group theory to the field of microwaves. One exception is

symmetrical waveguide junctions which have been investi-

gated by Montgomery et al. [1], Kerns [2], and Auld [3].

A few papers have been published which explored the con-

sequences of symmetry in periodic waveguides. Two recent

publications are [4] and [5]; the second paper employs

group-theoretic methods. There has been little attention

given, however, to exploiting the role symmetry plays in

determining the modal characteristics of uniform wave-

guides.

A coherent exposition of the development of the com-

plete theory required for the symmetry analysis of uniform

waveguides starting from the basic concepts of group

theory is not feasible in the few pages appropriate to a

journal paper, and this is not attempted here. Instead,

the relevant results from group theory will be cited, and

a ,brief indication given how these lead to the results pre-

sented for uniform waveguides in the previous piper

(hereafter referred to as [1]). This paper is not intended to

enable a reader unfamiliar with group theory to attain a

working knowledge of it as a technique for application to
microwave analysis. However, it is hoped that these

papers may provide a glimpse of the power of this techni-

que and motivate some readers to explore it. Three of the

many excellent books on the application of group theory

to various branches of physics and chemistry are [6]-[8].

To provide the maximum assistance to any interested
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reader ofthis abbreviated account, specific page references

will be made to the book by Tinkham [8] for the group

theoretical results needed in this exposition.

II. UNIFORM-WAVEGUIDE EQUATIONS

In these papers attention is restricted to uniform wave-

guides which may be transversely inhomogeneous, but

whose media are isotropic and piecewise homogeneous.1

For a uniform waveguide of infinite length, and assuming

an exp (jut) time dependence, the possible electromagnetic

fields can be classified into a set of modes, each of which

varies as exp ( —yz), where the propagation constant -y

is characteristic of the mode and a function of w. For wave-

guides with a closed boundary, the mode spectrtim is dis-

crete, and there are an infinite set of discrete values for

each u. For open boundary waveguides, the mode spec-

trum consists of a finite set of dkcrete modes plus a con-

tinuous spectrum.

The transverse components of the electromagnetic fields

of any mode can be expressed in terms of the longitudinal

components [9]. In the ith medium of an inhomogeneous

waveguide the transverse components can be writt n as

Here, ki = w (Piet) 1/2 and Zi = (~;/ci) 1/2 are parameters

characteristic of the ith medium, VT is the transverse V

operator, and a. is a unit vector in the .z dhection.

The partial differential equations for the longitudinal

components of the electric and magnetic fields in the ith

medium are

~VT2 + lc,2]E,, = - T2E.,

[VT2 + lcj]HZi = – y2HZi.

The boundary conditions at the interfaces between the dif-

ferent media must also be considered. These boundary

conditions are based on the continuity of the tangential

components of the electric and magnetic fields at the inter-

faces. The boundary conditions at the surrounding wave-

guide wall (if any is present) must also be included. If

the waveguide has an open boundary, then the modal

fields must fall off at least as fast as l/@/2, for large values
of the radius r.

The set of partial differential equations for E. and Ha
for all regions of the waveguide, together with the set of

boundary conditions, form an eigenvalue problem. For

a given value of the frequency u, the set of allowed values

1 The results listed in paper [1] actually hold for more general
waveguides. For example, they hold for inhomogeneous waveguides
with uniaxial, piecewise-homogeneous media when the optical axis is
parallel to the z axis, and also for waveguides with isotropic media
where the media may be transversely inhomogeneous. For these more
general cases, the analysis must be modified somewhat, but the re-
sults are the same as those cited in [1].
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of ~ are the eigenvalues, and the corresponding pairs of

Ez, Hs are the eigenfunctions.

For the purposes of symmetry analysis, it is not neces-

sary to find explicit solutions to the eigenvalue problem

summarized here. Several of the modal characteristics can

be deduced from the symmetry of the waveguide cross

section alone. The modes of inhomogeneous waveguides

are, in general, hybrid modes with longitudinal compo-

nents of both the electric and magnetic fields. Homoge-

neous waveguides are a special case of the more general

inhomogeneous waveguides, and the discussion applies

to homogeneous waveguides with some obvious simplifica-

tions.

111. ELEMENTARY GROUP THEORY

By a group G is meant a set of distinct elements for

which a combining operation is defined and which satisfies

four group postulates [8, pp. 6–7]. The combining opera-

tion is called “group multiplication” and associates a third

element of the set with any ordered pair of elements. The

four group postulates are as follows.

1) The product of any two elements of G is itself a

member of G.

2) The associative law holds so that for any three ele-

ments A, B, C of G; (AB)C = A (BC) = ABC.
3) G contains an element E, called the identity ele-

ment, such that for any element A of G, AE = EA = A.
4) For any element A of G, there exists an element of

G called the inverse of A, and denoted by A-l, such that
A-1A = AA-I = E.

The number of distinct elements of G is called the order

of the group and denoted by g. For any particular group

one can write a group multiplication table which displays

the results of multiplying any two elements of the group.

Note that group multiplication is not required to be com-

mutative; that is, in general, AB $ BA.
Examples of groups are provided by the sets of spatial

symmetry operations discussed in the previous paper.

It is easy to see that the set of n distinct rotations about

an axis which was labeled Cm in [1] satisfies the group

postulates. Likewise, the set of n distinct rotations about

an axis and n mirror reflections in planes containing the

axis which was labeled C.. in [1] also satisfies the. group

postulates. Sets of spatial symmetry operations which

satisfy the group postulates are called symmetry groups;

for a discussion of uniform waveguides, only the C% and ,
C.. symmetry groups need be considered.

The relationship of the group of spatial symmetry opera-

tions belonging to a particular symmetry group possessed

by a particular waveguide and the modal electromagnetic

fields of the waveguide can be expressed in either of two

ways. Consider some symmetry operation R belonging

to the symmetry group G. One can apply the symmetry

operation R to the waveguide structure, leaving the modal \

fields fixed in space; or one can apply the symmetry opera-

tion R to the modal fields, leaving the waveguide structure

fixed in space. In either case, after the symmetry opera-
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‘ tion is applied, the modal fields must again be a solution

~ to the boundary value problem for the waveguide. For

clarity, we distinguish between symmetry operations on

the structure and on the electromagnetic fields by defining

P(R) to be that symmetry operation acting on the cJectro-

magnetic fields which is equivalent to a spatial symmetry

operation R on the structure. In order for the resulting

electromagnetic- field-waveguide-structure relationship to

be the same after operation by either R (on the structure)

or P(R) (on the electromagnetic fields), one must have

P(R)E(r) = E(R-’r)

where E(r) is the electric field and R–l is the symmetry-

operation inverse to R; a similar relation holds for the

magnetic field [8, p. 32].

In addition to symmetry groups there are many other

sets of elements which satisf y the requirements for a group.

Particularly important examples for symmetry analysis

are sets of square matrices which satisfy all the group pos-

tulates with matrix multiplication as the group multipli-

cation operation. Such a set of matrices is called a group

representation, and certain group representations are

central to symmetry analysis.

Given any symmetry group G of order g, one can always

devise a set of g matrices which satisfies the same multipli-

cation table as the symmetry group, after making a cor-

respondence between each element of the symmetry group

and one of the matrices. In fact, the number of possible

group representations (sets of matrices) corresponding to

any symmetry group is infinite. The simplest group repre-

sentation for any symmetry group is a set of one-dimen-

sional matrices of unit amplitude.

Although an infinite number of group representations

can be written for any symmetry group, it is found that all

of these can be written as the sum of a few group repre-

sentations whose matrices have a dimension of one, two,

or at most, three [8, pp. 19-20]. These few group repre-

sentations are called the irreducible representations

associated with the symmetry group. For the symmetry

groups of current interest, the associated irreducible rep-

resentations are known and tabulated (see, for example,

the tables in [6], [7], or [8]).

The boundary value problems associated with wave-

guirles can usually be formulated in terms of an eigen-

value problem. Typically,

1,$ = x$

where L is an operator, k is an eigenvalue, and ~ is the

associated eigenfunction. Suppose the waveguide has the

symmetry group G’. If R is one of the symmetry operations

of the group, then the operator P(R) must commute with

the operator L. Therefore,

P(R)L$ = P(R)h+

L(P(R)I#) = hP(Zi)y.

Thus if # is an eigenfunction with eigenvalue k, then

P(R) ~ must also be an eigenfunction with eigenvalue h.

If the eigenvalue k has p degenerate eigenfunctions, +i

(i=l,2,. ”” ,p), then P(R) +., where +. is one of these p

eigenfunctions, can always be expressed as a sum over the

p degenerate eigenfunctions. The effect of P (R) is com-

pletely characterized by its effect on each of the basis

functions ~~. For example

P(R) I), = hr(R)lj + hr(R)2j + “” Q + +.r(R),j.

(1)

The coefficients r(R) ij in these equations can be con-

sidered to be the elements of a p X p square matrix r(R).

If the ~~ are collected into a row matrix

then (1) can be written as

P(R)~ = ~1’(R). (2)

Any solution of the eigenvalue problem with eigenvalue

A must be expressible as a linear combination of the p

independent solutions +1,4%, . . . ,*P. Thus there is an equa-

tion analogous to (2) for every member of the symmetry

group G. The complete set of matrices r(R) for all g

members of the symmetry group forms a representation.

The basic assumption of symmetry analysis is the Irre-

ducibility Postulate ([7, pp. 183-184] or [8, p. 34]):

Provided the~e are no accidental degeneracies, every de-

generate group of eigenfunctions of an operator L provides an

irreducible representation of the group of symmetry operations

which leaves ~. invariant.

Thus the r (R) in (2) form an irreducible representation.

An alternative form of this postulate is the one which

is used as the basis for the symmetry analysis here.

For every p-dimensional irreducible representation of the

symmetry group under which an operator L is invariant, we can

find p-fold degenerate sets of eigenfunctions. Any further de-

generacy would be accidental and expected to occur only rarely,

As a consequence, any eigenfu,nction of the operator

L can tie associated with a row of one of the irreducible

representations of the symmetry group G. For those ir-

reducible representations which are one-dimensional, each

of the associated eigenfunctions is nondegenerate. For

those irreducible representations which are two-dimen-

sional, the associated eigenfunctions must occur in degen-

erate pairs, with one member of each pair associated with

the first row and the second member with the second row

of the irreducible representation. A similar statement

applies to higher dimensional irreducible representations,

but for uniform waveguides only one- or two-dimensional

irreducible representations are encountered.

Suppose one finds a function $ which is a solution of the

2 The fundamental assumption is adopted that the basic cause of
mode degeneracy is (almost) always symmetry related. If a degener-
acy is found which appears not to be symmetry related, it is termed
an ‘[accidental” degeneracy. In most cases, however, a deeper analy-
sis reveals a subtle symmetry which produces the “accidental”
degeneracy.
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eigenvalue problem; @ may be a single. eigenfunction or

some sum of eigenfuntitions. The function @ can be cle-

cornposed into a sum of functions, each of which belongs to

one row of one of the irreducible representations of the

symmetry group G by using the “projection operators”

of the symmetry group [8, pp. 3941]. When the projec-

tion operator pkk(’) for the ith irreducible representation

is applied to the function @, it selects out that part of 4

which belongs to the lcth row of the ith irreducible repre-

sentation.

For example, suppose

~ = ~ $ J,.(j)
j=l m=l

where the”sum on j is over the N irreducible representations

of the symmetry group, dj is the dimension of the jth

irreducible representation, and l~(j) is an eigenfunction

belonging to the mth row of the jth irreducible represen-

tation. Then

~kk(i) @ = *k(i).

For irreducible representations with dj ~ 2, the eigenfunc-

tions belonging to the several rows of the same irreducible

representation will be degenerate with each other.

IV. APPLICATIONS TO UNIFORM

WAVE GUIDES

In the brief discussion of Section III, it was stated that

eaeh eigenfunction of an operator can be associated with

a row of one of the irreducible representations of the sym-

metry group to which the operator belongs. For uni-

form waveguides, the operator is (V~2 + ki’), and the

symmetry group is either C* or C~.. The eigenfunctions

aie the E,,, H, pairs for each mode of the waveguide. Thus

each mode of a uniform waveguide can be identi~ed with

a row of one of the irreducible representations of the sym-

metry group of the waveguide. The mode classes of the

uniform waveguide are defined on this basis. All of the

modes belonging to the same row of the same irreducible

representation ar,e placed in the same mode class.

Thus, the total number of mode classes for a uniform

waveguide is equal to the total number of rows of all of

the irreducible representations of the symmetry group of

the waveguide. Further, every irreducible representation

which has a dimension of two will have two mode classes
associated with it whose modes are mutually degenerate.

Since the symmetry groups C. and C.. have no irreducible

representations with dimension higher than two, theie

will be no symmetry-induced modal degeneracies higher

than two. This discussion is the basis for [1, tables 1 and

2].

In [1, sec. V] waveg+des with C4 and Cb. symmetries

were discussed as examples (see [1, figs. 5(a) and 6(a)].

Reference to tables of irreducible representations of the

symmetry groups (see [6], [7], or [8], for example) ie-

veals that symmetry group Cb has two one-dimensional
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and one two-dimensional irreducible representations, and

symmetry group Ce. has four one-dimensional and two

two-dimensional irreducible representation. Therefore,

waveguides with Ch symmetry have two nonedegenerate

mode classes and a pair of mutually degenerate mode

classes, and waveguides with C6, symmetry have four

nondegenerate mode classes and two pairs of mutually

degenerate mode classes.

Using the projection operators introduced above, the

azimuthal symmetry of the ,modes in any mode class can

be determined. The azimuthal symmetry for each mode

class is the characteristic that physically distinguishes

the various mode classes. To exploit the projection

operators of the symmetry group of the waveguide,

one starts with a general representation for the longitu-

dinal electric and magnetic fields in the waveguide and pro-

jects out that portion belonging to a particular row of a

particular irreducible representation. The resulting ex-

pression is a representation of the modal field for the

mode class associated with that row of that irreducible

representation.

For waveguides with C. symmetry, the

form of Fourier series is most convenient.

EZ(19,T) = ~ Am(r) exp ( jm~)
m=—co

.

exponential

H,(O,r) = ~ B~(T) exp (jm6).
m=. @

By applying the projection operators for each irreducible

representation of a symmetry group Cm, the general form

for the longitudinal electric and magnetic fields for the

modes in each mode class can be obtained. This process

was followed to determine the Fourier series representa-

tions of [1, table III] and the waveguide sectors shown in

[1, fig. 5 and table V].

For waveguides with Cn. symmetry it is most convenient

to write the Fourier series for the longitudinal electric

magnetic fields in the form

Ez(r,O) = ~ (An(r) cos (m@) + Cm(r) sin (m@))
*O

.

and

HZ(r,O) = ~ (B~(7) cos (@) + D~(r) sin (nzO)).
~=il

By applying the projection operators for each irreducible

representation of a symmetry group Cm~, the general form

for the longitudinal electric and magnetic fields for the

modes in each mode class can be obtained. This process

was followed to determine the Fourier series representa-

tions of [1, table IV] and the waveguide sectors shown

in [1, fig, 6 and table VI].

V. NONSPATIAL SYMMETRY

In [1, sec. VI], nonspatial symmetries were mentioned.

The case of frequency-reversal symmetry will be briefly

discussed here. This symmetry is based on the real-time-
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function postulate (Carlin and Giordano [10]) which

states that the response of a system to an excitation which

is a real function of real time must also be a real function

of real time.

for exp (jot)

for real co.

Landau and Lifshitz [11] have shown that

time dependence this postulate requires that

e*(—oJ) = e(w)

p*(–w) = M(@)

The frequency-reversal operator P(Q) is defined bv

P(!l)F(CO) = F*(–oJ).

Note that this is an antilinear operator, since

P(Q) [aF(u) ] = a*P(Q) [F(fJ) ].

The full symmetry group of any uniform waveguide of the

type considered in these papers includes, in addition to

the spatial symmetry operations, the frequency-reversal

operation plus the product of this operation with each of

the spatial operations. Thus the total number of symmetry

operations of the group is twice the number of purely

spatial symmetry operations; and half of the total number

of symmetry operations are antilinear. Because of the

antilinear nature of these operations, it is not possible to

find matrix representations of the complete symmetry

group that satisfy the desired combining rules. It is pos-

sible, however, to find a set of matrix representations

which satisfy a different set of combining rules; this set of

matrices is called a corepresentation [8, p. 144].

A discussion of corepresentations is not feasible here,

and only the results of interest will be mentioned. It can

be shown that for most purposes [8, p. 145], only the usual

irreducible representations associated with the subgroup

of the complete symmetry group containing the spatial

symmetry operations need be considered, with a few re-

strictions. For those symmetry groups of spatial operations

whose irreducible representations are real (this includes

all the C., groups), the inclusion of the frequency-reversal

operation has no effect. For these cases the conclusions

reached previously (ignoring the frequency-reversal opera-

tion) are all valid.
For those symmetry groups of spatial operations whose

irreducible representations are complex, and where pairs

of these irreducible representations are complex conju-

gates; then with regard to mode degeneracies, pairs of

one-dimensional complex-conjugate irreducible representa-

tions act as two-dimensional irreducible representations.

This applies to all of the C. groups for n >2, where

irreducible representations with complex elements appear.

Use of thk artifice gives all of the results of interest to

these papers without having to resort to the theory of co-

representations.

VI. CONCLUSIONS

The application of symmetry analysis to uniform wave-

guides enables one to: classify the modes of the waveguide

into mode classes based on the azimuthal symmetry of
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the modal fields, predict the degeneracies of the various

mode classes, describe the azimuthal symmetry of all the

modes in a mode class, and determine the minimum wave-

guide sectors, and their associated boundary conditions,

which are necessary and sufficient to completely determine

the modes in a mode class. These results follow from a

knowledge of the symmetry type of the waveguide under

consideration, and they do not require a solution of a

boundary-value problem.

The results obtained here are based on the theory of

group representations, and in particular, on the set of

irreducible representations associated with each symmetry

group. Since a mode class can be associated with each row

of each irreducible representation belongin g to the sym-

metry group of the waveguide, the total number of mode

classes is equal to the total number of rows of all of these

irreducible representations. Further, the number of non-

degenerate mode classes is equal to the number of irre-

ducible representations with only a single row (that is,

these representation are matrices of order one). The num-

ber of degenerate mode-class pairs is equal to the number

of irreducible representations with two rows, Since no

irreducible representations with more than two rows can

occur for symmetry groups C. and C.,, there can be no

symmetry-induced mode degeneracies of higher order than

two.

The use of the projection operators obtained from the

irreducible representations enables one to project out from
a general function of the azimuthal coordinate the specific

azimuthal variation characteristic of all of the modes in

a particular mode class. From this, one can find the azi-

muthal symmetry possessed by the modal electromag-

netic fields of all the modes in the particular mode class.

This, in turn, leads to the determination of the minimum

waveguide sector, and its associated boundary conditions,

which is necessary and sufficient to completely determine

all the modes in that mode class.
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